

et Propulsion Laboratory

UIA Presentation – April 2012

Novel Ultrasonic Horn Designs for Extraterrestrial Applications

Stewart Sherrit

Jet Propulsion Laboratory, Caltech

April 18,2012

UIA Presentation – San Francisco – April 2012 © 2012 California Institute of Technology. Government sponsorship acknowledged.

Outline

- •What does JPL do?
- Who are we?
- •What we do!
- Chronology of Sampling technology development
- oLithotripsy
- OUltrasonic Sonic Driller Corer USDC
- oUSDC –Ultrasonic Rock Abrasion Tool (URAT)
- **OInverted Stepped Horns**
- oFolded Horns
- oFlipped horns
- ODog Bone Horns
- **OFlexure Monolithic Horns**
- OAsymmetrically grooved horns

What do we do? Currently over 30 missions with JPL instruments Exploring the Solar System (March 2012)

See - http://www.jpl.nasa.gov/missions/index.cfm?type=current

Example of a current Mission at JPL!

Jet Propulsion Laboratory UIA Presentation— April 2012

Mars Science Laboratory MSL – Landing August 2012!

http://mars.jpl.nasa.gov/msl/multimedia/videos/index.cfm?v=24

Advanced Technologies Group/ NDEAA Lab - Who Are We?

Jet Propulsion Laboratory UIA Presentation— April 2012

Compilation of Physicists and Mechanical Engineers with backgrounds in Ultrasonics, Mechanisms, Piezoelectrics, NDE, Dynamics

http://ndeaa.jpl.nasa.gov

What we do: Our Niche

UIA Presentation – April 2012

Usually use piezoelectric materials

Although we are open to other ways of doing it!!!

Micro-positioners eg. Space Interferometry Mission

let Propulsion Laboratory

- •3 interferometers
- •2x7.2 and 9 m baselines
- Earth trailing solar orbit
- 5.5 year mission life with goal of 10 years
- Over 200 piezoelectric stacks
- •MISSION CANCELLED 2011

Micro-positioners – SIM – Our role

et Propulsion Laboratory

UIA Presentation – April 2012

Develop a series of life tests to insure full mission life

☐ AC lifetest#1 60 Vpp, 2kHz, 10¹⁰ cycles

☐ AC lifetest#2 20 Vpp, 2kHz, 10¹¹ cycles

- ☐ DC life test 100 Volts DC- Controlled Humidity Incomplete due to mission cancellation
- ☐ See Sherrit et al. 2008, 2011

MSL Instrument - CHEMIN - XRD XRF - Sample cell shaker and inlet funnel

Jet Propulsion Laboratory

UIA Presentation – April 2012

Original Design- problems at Mars ambient and under launch random vibe.

Sample Handling – Our Role

let Propulsion Laboratory

UIA Presentation – April 2012

MSL has 21 piezoelectric actuators for sample handling and instrument cells

- 2 on SAM inlet funnel
- 3 on CHEMIN inlet funnel for powder delivery assist
- 16 on CHEMIN instrument sample wheel

See Sherrit et al. 2009

Sample Handling – Our Role

UIA Presentation – April 2012

MSL Sample cell Shakers Re-design

Phillippe Sarrazin (Inxitu) came up with tuning fork design and with Eric Olds (Swales) they came up with

Problems

1/ Thermal analysis showed marginal thermal stress on piezoelectric2/ Wheel mounting created anisotropic stress. (Energy to wheel)

Sample Handling – Our Role

let Propulsion Laboratory

UIA Presentation – April 2012

MSL Sample cell Shakers Re-design fine tuning -

Solutions

- 1/ Shorten Piezoelectric
- 2/ Use Invar end caps
- 3/ Use ball/set screw mount
- 4/ Soften Tuning fork
- 5/ make base symmetric

See http://msl-scicorner.jpl.nasa.gov/Instruments/CheMin/

Sampling

UIA Presentation – April 2012

Started out looking at pure ultrasonics with Cybersonics Inc. (Erie, PA) Discussions with Cybersonics Inc. led to the development of the USDC

First paper describing the technology - see Sherrit et al. (1999)

Sampling

UIA Presentation – April 2012

Initial development was mainly experimental- looking at ways to improve or expand the technology.

http://www.youtube.com/watch?v=phLiWya1sGo

First real engineering occurred when USDC was selected (URAT) for backup Rock Abrasion Tool on the Mars Exploration Rovers (MER)

Sampling

let Propulsion Laboratory

UIA Presentation – April 2012

(URAT) Ultrasonic Rock Abrasion Tool -Mechanical design and fabrication along with flight like electronics (FPGA switching H-bridge)

The initial response was, "This is great. Can you make it Shorter?" Which is how we started to develop novel Ultrasonic horns

Sampling – Folded Horns

UIA Presentation – April 2012

Q: How do you create at 20 kHz ultrasonic horn and make it short?

A1: Fold it Axisymmetric Models

Sampling – Folded Horns

UIA Presentation – April 2012

Design and tested the doubly Folded horn-

Sampling – Folded Horns

UIA Presentation – April 2012

Incorporated the horn in a non-pneumatic rock powder sampler

We also came up with a solid planar Monolithic version. See Sherrit et al. 2002

Sampling – Flipped Horns

	Flipped horn	Standard horn	Difference (%)
Resonance frequency (Hz)	18061	17950	0.61
Horn-tip disp. (m), 1 volt	4.62×10 ⁻⁷	4.63×10 ⁻⁷	0.22
Electric current (amp), 1 volt	1.05×10 ⁻²	1.04×10 ⁻²	0.95
Max. stress (Pa), 1 volt	2.50×10^{6}	2.24×10^{6}	10.4
Horn-tip disp. (m), 1 watt	4.51×10 ⁻⁶	4.54×10 ⁻⁶	0.67

Table 1. Comparison of performance of the flipped and the standard horns. See Chang et al. 2005

Sampling – Dog-bone Horns

et Propulsion Laboratory

UIA Presentation – April 2012

For an impact device the interaction time is of the order of 50 μs Which suggest at the tip for maximum momentum transfer the tip Thickness should be less than \approx 50 μs *4000 m/s = 0.02 m

The 5 designs of ultrasonic horn studied:

- a) Conventional
- b) Neck at middle span of horn
- c) Neck moved down 20 mm
- d) Neck moved up 20 mm
- e) No neck

Horn Type	Horn length (mm)	Resonance (Hz)	Anti-Resonance	Coupling Factor	Max.
			(Hz)		Displacement
					(mm)
Conventional	250	5314	5726	0.372	0.209
Neck at middle	200	5473	5947	0.391	0.185
Neck up 20 mm	175	5421	5916	0.400	0.185
Neck down 20 mm	255	5266	5666	0.369	0.209
No Neck	240	5304	6016	0.472	0.133

See Chang et al. 2004

Sampling – Dog-bone Horns Analytical Modeling

Jet Propulsion Laboratory

UIA Presentation – April 2012

Integrated program package:
Modal analysis – Resonance
Modal analysis – Anti-resonance
Harmonic analysis
Simplified integrated model
Impact analysis
Spring-mass model

Resonance frequency 5195Hz

Sampling – Used Dog-bone Horn to produce Ice gopher Wire-line hammer drill

Jet Propulsion Laboratory

UIA Presentation – April 2012

Components
Gopher
Actuator(Transducer)
Drill bit
Free mass
Pump
Preload

Gopher Design Fabrication

Jet Propulsion Laboratory

Gopher Field Trips – Mt. Hood, Oregon

let Propulsion Laboratory

Lake Vida (77.23°S 162°E) in the McMurdo Dry valleys, Antarctica, offers a Mars analog environment for testing the detection and description of life in a previously unstudied extreme ecosystem

Gopher Field Trips – First McMurdo, Antarctica

Jet Propulsion Laboratory

let Propulsion Laboratory

UIA Presentation – April 2012

Demonstrated that the technology is feasible Learn about challenges and design changes required to enhance its drilling capability

Drilling depth of 1.76m is more than the total length of the Gopher including its support elements (pump, preload weights,

Ventifacts

Current version is Auto gopher

UIA Presentation – April 2012

Rotary Hammer with sidewall anchors for deeper drilling

Demonstrated 2 m in limestone

See Bar-Cohen et al. 2012

Flexured horns: What are we doing?

Jet Propulsion Laboratory UIA Presentation – April 2012

Flexured horns: Why?

UIA Presentation – April 2012

When designing Gopher Actuator-Transducer Stress bolt kept breaking Stress bolt Dog-bone horn PZT stack Backing

let Propulsion Laboratory

UIA Presentation – April 2012

- 1. Increase manufacturing yield of disks vs rings
- 2. No Internal Discharge to stress bolt
- 3. Higher energy density
- 4. Pre-stress is not limited by bolt diameter
- 5. Actuator has higher coupling since it is not working against stiff bolt
- 6. Softer spring increases thermal preload stability

High Temperature Drill 500 °C

Bellville Washers

Design Example

Jet Propulsion Laboratory

Manufacturing method - EBM

UIA Presentation – April 2012

Chose EBM – Electron Beam Melting CALRAM Inc.

Examples from Arcam AB

- Landing gear component
- •Tri-flange Implant

www.arcam.com

Can Use Solid Stacks

let Propulsion Laboratory

UIA Presentation – April 2012

Impedance spectra of the bare Piezomechanik Gmbh bipolar stack

(9.33 mm, 25.4 OD)

Small signal resonance analysis the bare stack

Material d33eff = 480 pC/N Capacitance C=261 nF. Coupling k_{33} =0.56 sE33=5.4x10⁻¹¹ m²/N Q was 30.

Assembly

let Propulsion Laboratory

- •Inner surfaces were finished using mill
- •Flexures opened using pre-stress rig
- •Stacks fixed using 3M 2216
- •Preload monitored by measuring charge produced when flexures released

UIA Presentation – April 2012

Assembled horns f_s =28.5-29.3 kHz k=0.20-0.21 Mechanical Q's =106 , 115

Example application

UIA Presentation – April 2012

Horns used in Barth Motor

Initial results - 15 RPM at 0.3 N-m

Movie of horn used as motor

Jet Propulsion Laboratory

Can we use horns to rotate and hammer?

et Propulsion Laboratory

UIA Presentation – April 2012

Develop technologies for sample acquisition in extreme environments with reduced power, weight on bit and increased efficiency

- Hammering is great for breaking rock.
- Rotation is great for removing cuttings.
- •This is why you have rotary hammer drills at Home depot

Can we develop a piezoelectric mechanism for hammering and with the same piezoelectric actuator induce rotation?

YES

Single Piezo-Actuator Rotary-Hammering (SPaRH) Drill

et Propulsion Laboratory

UIA Presentation – April 2012

Drilling using Hammering is limited to a few centimeters depth without a debris extraction method. Rotation with augers is beneficial in that it aids drilling and extracts drilling debris.

Previous approaches to induce rotation from extensional motion

- Create a bit with some asymmetry in shaft to induce rotation
- •Impact wrenches/drivers
- Asymmetric teeth on bit

Approach

Jet Propulsion Laboratory

UIA Presentation – April 2012

Use existing ultrasonic actuators / horns to create directional impacts on bit.

Use the micro-impacts of extension or bending at high frequency to produce macroscopic rotation.

An Example Design and Analysis

Jet Propulsion Laboratory

UIA Presentation – April 2012

Design solution

Combine fluted bit rotation (cuttings removal) with Ultrasonic/Sonic percussion (drilled media fracturing and cuttings fluidization)

Jet Propulsion Laboratory

Horn Analysis

UIA Presentation – April 2012

Looked at a large number of horn to produce twist and extension Two rejected horn geometries are shown above.

An acceptable horn motion

Jet Propulsion Laboratory

Horn Analysis

UIA Presentation – April 2012

Harmonic analysis results suggest mode is reasonably coupled

Table 1. ANSYS predicted performance of chosen transducer design at 1 W input power.

Frequency (First axial	Coupling Coefficient	Tip Displacement,	Tip Rotation, rad	Voltage, V
mode)		μm		
12217	0.08	1.75	4.40E-5	27.0

Used Mason's 1D network model to determine movement of nodal plane

Fabrication and testing

Jet Propulsion Laboratory

UIA Presentation – April 2012

Fabricated horn and tested its frequency response

Transducer performance derived from impedance analysis.

First Resonant Frequency	Electromechanical Coupling Coefficient		
11 972 Hz	0.07		

Fabrication and testing

let Propulsion Laboratory

UIA Presentation – April 2012

Testing of the horn tip displacement at resonance. A fotonics fiber optic sensor was used to test both the extension and rotation at the tip at the resonance frequency

Testing

Jet Propulsion Laboratory

UIA Presentation – April 2012

Comparison of FEM and experimental extension data small signal FEM predictions compare favorably to data at low power

UIA Presentation – April 2012

Impacts on free mass would transmit rotation to bit through key and still be free to expand in the axial direction. The bit and free mass preloaded using NeFeB magnets

Drilling action

UIA Presentation – April 2012

Also noted at higher frequencies we could rotate in opposite direction

Drill Testing

Input Power, W	WOB, lbs	Preload, lbs	Duty Cycle	Drill Rate, mm/min
100	3	4	80 %	8

Testing

et Propulsion Laboratory

- •A novel horn concept to produce hammering and rotation using a single piezoelectric transducer was investigated theoretically using a variety of modeling methods via MATLAB and ANSYS.
- A transducer design was fabricated and demonstrated simultaneous rotation and hammering.
- •This Piezoelectric Rotary Hammer Drill prototype has not been optimized, and requires further development however the un-optimized version rotated at 200 RPM.
- •We also noted that we could reverse the direction of rotation by driving at higher frequencies (2x)
- •Future work should include considering different horn shape designs, in order to compare with the performance of this initial prototype.
- •In addition looking at other geometries, horn materials such as Titanium may aid in increasing the electromechanical mechanical coupling.

Conclusions

- •Ultrasonic Horns can be designed to produce many original mechanisms.
- •We have just scratched the surface of Potential applications.
- We are still scratching

References

UIA Presentation – April 2012

Bar-Cohen, Yoseph (2012) Mircea Badescu, Stewart Sherrit, Kris Zacny, Gale L Paulsen, Luther Beegle, Xiaoqi Bao, "Deep Drilling and Sampling via the Wireline Auto-Gopher Driven by Piezoelectric Percussive Actuator and EM Rotary Motor" Proceedings of the SPIE Smart Structures and Materials/NDE Symposium,vol 8345-78, San Diego, CA, March 12-15

Chang, Z. (2005), S. Sherrit, M. Badescu, X. Bao, and Y. Bar-Cohen, "Design and analysis of ultrasonic actuator in consideration of length reduction for a USDC (Ultrasonic/Sonic Driller/Corer)," Proceeding of the Industrial and Commercial Applications of Smart Structures Technologies, SPIE Smart Structures and Materials Symposium, Paper #5762-10, San Diego, CA, March 7 - 10, 2005.

Chang, Z. (2004), S. Sherrit, X. Bao, Y. Bar-Cohen "Design and analysis of ultrasonic horn for USDC (ultrasonic/sonic driller/corer)", Proceedings of the SPIE Smart Structures Conference, SPIE Paper [5388-34], San Diego, CA., Mar 15-18.

Sherrit, Stewart(2002), Stephen A. Askins, Mike Gradziol, Benjamin P. Dolgin, Xiaoqi Bao, Zensheu Chang, and Yoseph Bar-Cohen, "Novel Horn Designs for Ultrasonic/Sonic Cleaning Welding, Soldering, Cutting and Drilling," Paper 4701-34, Proceedings of the SPIE Smart Structures and Materials Symposium, San Diego, CA, March 17-19

Sherrit, Stewart (1999), B.P. Dolgin, Y. Bar-Cohen, D. Pal, J. Kroh, T. Peterson "Modeling of Horns for Sonic/Ultrasonic Applications", Proceedings of the IEEE Ultrasonics Symposium, pp. 647-651, Lake Tahoe, Oct 1999

Sherrit, Stewart (2008), Christopher M. Jones, Jack B. Aldrich, Chad Blodget, Xiaoqi Bao, Mircea Badescu, Yoseph Bar-Cohen, "Multilayer piezoelectric stack actuator characterization", Proceedings of the SPIE 15th International Symposium on Smart Structures and Materials, San Diego, CA, SPIE Vol. 6929-8, 9-13 March

Sherrit, Stewart (2009), Kent Frankovich, Xiaoqi Bao, Curtis Tucker, "Miniature piezoelectric shaker mechanism for autonomous distribution of unconsolidated sample to instrument cells", Proceedings of the SPIE 16th International Symposium on Smart Structures and Materials, San Diego, CA, Proc. SPIE 7290, 72900H

Sherrit, Stewart (2011), Xiaoqi Bao, Christopher M. Jones, Jack B. Aldrich, Chad J. Blodget, James D. Moore, John W. Carson, and Renaud Goullioud, "Piezoelectric Multilayer Actuator Life Test", IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control. **58**, no. 4, pp. 820-828

<u>Acknowledgements</u>

let Propulsion Laboratory

UIA Presentation – April 2012

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by National Aeronautics and Space Administration (NASA). Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology.

Advanced Technologies Group-

Xiaoqi Bao, Yoseph Bar-Cohen, Mircea Badescu, Jack Aldrich, Zensheu Chang, Ayo Olorunsola Students: Luke Domm, Phillip Allen

MSL SAM

Jason Feldman Steve Battel (Battel Eng.)

MSL CHEMIN

Allen Farrington
Bill Harris
Bob Debusk
Curtis Tucker
Dave Blake (Ames)
Dave Randall

Eric Olds (Swales)
Jennifer Dooley

John Koehler Kent Frankovich

Phillippe Sarrazin (Inxitu)

Soren Madsen

Tim Mccann Wayne Zimmerman SIM

Ali Ghanneh
Bob Glaser
Brant Cook
Chad Blodgett
Dave Braun
Dave Van-Buren
Eric Reed
Jeff Sokol

John Carson

Mohamed Tehrani (Aerospace Inc.)

Paul MacNeal Paul McGrath

Susan Trollier-McKinstry (Penn State)